Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201166

RESUMO

Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in several body fluids. The effects of this exposure on the fetus are under active investigation in several research laboratories. The aim of our work was to study the impact of prenatal exposure to BPA in the liver of rat fetuses from a sex-dependent point of view. We particularly investigated the effects of prenatal BPA exposure on hepatic lipids because of their crucial role, not only for the liver, but also for the whole-body functions. Our results demonstrate that the liver of rat fetuses, in utero exposed to a very low dose of BPA (2.5 µg/kg/day), displays significant modulations with regard to proteins involved in cholesterol and fatty acid biosynthesis and trafficking. Moreover, an impact on inflammatory process has been observed. All these effects are dependent on sex, being observable only in female rat fetuses. In conclusion, this work demonstrates that maternal exposure to BPA compromises hepatic lipid metabolism in female offspring, and it also reveals the perspective impact of BPA on human health at doses currently considered safe.


Assuntos
Compostos Benzidrílicos/toxicidade , Feto/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Compostos Benzidrílicos/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Feto/efeitos dos fármacos , Inflamação/patologia , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Fenóis/química , Gravidez , Ratos Sprague-Dawley
2.
Nutrients ; 13(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921866

RESUMO

Persistence of damage induced by unhealthy diets during youth has been little addressed. Therefore, we investigated the impact of a short-term fructose-rich diet on liver metabolic activity in adolescent rats and the putative persistence of alterations after removing fructose from the diet. Adolescent rats were fed a fructose-rich diet for three weeks and then switched to a control diet for further three weeks. Body composition and energy balance were not affected by fructose-rich diet, while increased body lipids and lipid gain were found after the rescue period. Switching to a control diet reversed the upregulation of plasma fructose, uric acid, lipocalin, and haptoglobin, while plasma triglycerides, alanine aminotransferase, lipopolysaccharide, and tumor necrosis factor alpha remained higher. Hepatic steatosis and ceramide were increased by fructose-rich diet, but reversed by returning to a control diet, while altered hepatic response to insulin persisted. Liver fatty acid synthase and stearoyl-CoA desaturase (SCD) activities were upregulated by fructose-rich diet, and SCD activity remained higher after returning to the control diet. Fructose-induced upregulation of complex II-driven mitochondrial respiration, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, and peroxisome proliferator activated receptor α also persisted after switching to control diet. In conclusion, our results show prolonged fructose-induced dysregulation of liver metabolic activity.


Assuntos
Dieta da Carga de Carboidratos/efeitos adversos , Ingestão de Alimentos/fisiologia , Frutose/administração & dosagem , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Alanina Transaminase/sangue , Animais , Composição Corporal , Ceramidas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/etiologia , Frutose/sangue , Haptoglobinas/metabolismo , Lipídeos/sangue , Lipocalinas/sangue , Lipopolissacarídeos/sangue , Fígado/metabolismo , Ratos , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/fisiologia , Ácido Úrico/sangue
3.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991770

RESUMO

Dietary fats and sugars were identified as risk factors for overweight and neurodegeneration, especially in middle-age, an earlier stage of the aging process. Therefore, our aim was to study the metabolic response of both white adipose tissue and brain in middle aged rats fed a typical Western diet (high in saturated fats and fructose, HFF) and verify whether a similarity exists between the two tissues. Specific cyto/adipokines (tumor necrosis factor alpha (TNF-α), adiponectin), critical obesity-inflammatory markers (haptoglobin, lipocalin), and insulin signaling or survival protein network (insulin receptor substrate 1 (IRS), Akt, Erk) were quantified in epididymal white adipose tissue (e-WAT), hippocampus, and frontal cortex. We found a significant increase of TNF-α in both e-WAT and hippocampus of HFF rats, while the expression of haptoglobin and lipocalin was differently affected in the various tissues. Interestingly, adiponectin amount was found significantly reduced in e-WAT, hippocampus, and frontal cortex of HFF rats. Insulin signaling was impaired by HFF diet in e-WAT but not in brain. The above changes were associated with the decrease in brain derived neurotrophic factor (BDNF) and synaptotagmin I and the increase in post-synaptic protein PSD-95 in HFF rats. Overall, our investigation supports for the first time similarities in the response of adipose tissue and brain to Western diet.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Dieta Ocidental , Metabolismo Energético , Adipócitos/metabolismo , Animais , Biomarcadores , Citocinas/sangue , Citocinas/metabolismo , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Masculino , Modelos Biológicos , Especificidade de Órgãos , Ratos , Receptor trkB/metabolismo , Transdução de Sinais
4.
Nutrients ; 11(11)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694213

RESUMO

To assess the effect of 4 weeks of high fat-high fructose feeding on whole body composition, energy balance, specific markers of oxidative stress and inflammation, and insulin sensitivity in the liver of middle-aged rats, rats (1 year) were fed a diet rich in saturated fatty acids and fructose (HFF rats), mimicking the "Western diet", and compared with rats of the same age that were fed a low fat diet (LF rats). HFF rats exhibited a significant increase in the gain of body weight, energy, and lipids compared to LF rats. HFF rats also showed hepatic insulin resistance, together with an increase in plasma triglycerides, cholesterol, and tumor necrosis factor alpha. Hepatic lipids, triglycerides and cholesterol were higher in HFF rats, while a significant decrease in Stearoyl-CoA desaturase activity was found in this tissue. A marked increase in the protein amount of complex I, concomitant to a decrease in its contribution to mitochondrial respiration, was found in HFF rats. Lipid peroxidation and Nitro-Tyrosine content, taken as markers of oxidative stress, as well as NADPH oxidase activity, were significantly higher in HFF rats, while the antioxidant enzyme catalase decreased in these rats. Myeloperoxidase activity and lipocalin content increased, while peroxisome proliferator activated receptor gamma decreased in HFF rats. The present results provide evidence that middle-aged rats show susceptibility to a short-term "Western diet", exhibiting altered redox homeostasis, insulin resistance, and early mitochondrial alterations in the liver. Therefore, this type of dietary habits should be drastically limited to pursue a "healthy aging".


Assuntos
Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Composição Corporal , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dieta com Restrição de Gorduras/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/administração & dosagem , Frutose/administração & dosagem , Resistência à Insulina , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
5.
Sci Rep ; 9(1): 12082, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427655

RESUMO

Endogenous reactive oxygen species (ROS) are by-products of the aerobic metabolism of cells and have an important signalling role as secondary messengers in various physiological processes, including cell growth and development. However, the excessive production of ROS, as well as the exposure to exogenous ROS, can cause protein oxidation, lipid peroxidation and DNA damages leading to cell injuries. ROS accumulation has been associated to the development of health disorders such as neurodegenerative and cardiovascular diseases, inflammatory bowel disease and cancer. We report that spores of strain SF185, a human isolate of Bacillus megaterium, have antioxidant activity on Caco-2 cells exposed to hydrogen peroxide and on a murine model of dextran sodium sulfate-induced oxidative stress. In both model systems spores exert a protective state due to their scavenging action: on cells, spores reduce the amount of intracellular ROS, while in vivo the pre-treatment with spores protects mice from the chemically-induced damages. Overall, our results suggest that treatment with SF185 spores prevents or reduces the damages caused by oxidative stress. The human origin of SF185, its strong antioxidant activity, and its protective effects led to propose the spore of this strain as a new probiotic for gut health.


Assuntos
Bacillus megaterium/metabolismo , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Esporos Bacterianos/química , Animais , Bacillus megaterium/efeitos dos fármacos , Células CACO-2 , Sulfato de Dextrana/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/metabolismo
6.
Cell Metab ; 29(6): 1400-1409.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30982732

RESUMO

Phosphatidylinositol-3-kinase (PI3K) activity is aberrant in tumors, and PI3K inhibitors are investigated as cancer therapeutics. PI3K signaling mediates insulin action in metabolism, but the role of PI3K isoforms in insulin signaling remains unresolved. Defining the role of PI3K isoforms in insulin signaling is necessary for a mechanistic understanding of insulin action and to develop PI3K inhibitors with optimal therapeutic index. We show that insulin-driven PI3K-AKT signaling depends on redundant PI3Kα and PI3Kß activities, whereas PI3Kδ and PI3Kγ are largely dispensable. We have also found that RAS activity promotes AKT phosphorylation in insulin-stimulated hepatocytes and that promotion of insulin-driven AKT phosphorylation by RAS depends on PI3Kα. These findings reveal the detailed mechanism by which insulin activates AKT, providing an improved mechanistic understanding of insulin signaling. This improved model for insulin signaling predicts that isoform-selective PI3K inhibitors discriminating between PI3Kα and PI3Kß should be dosed below their hyperglycemic threshold to achieve isoform selectivity.


Assuntos
Hepatócitos/metabolismo , Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/fisiologia , Animais , Células Cultivadas , Células HEK293 , Hepatócitos/efeitos dos fármacos , Humanos , Insulina/metabolismo , Insulina/farmacologia , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas ras/genética
7.
Mol Neurobiol ; 55(4): 2869-2883, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28455700

RESUMO

The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.


Assuntos
Envelhecimento/patologia , Comportamento Alimentar , Hipocampo/patologia , Inflamação/patologia , Estresse Oxidativo , Animais , Biomarcadores/sangue , Peso Corporal , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Frutose , Inflamação/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossíntese
8.
Food Nutr Res ; 61(1): 1331657, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659742

RESUMO

Objective: The link between metabolic derangement of the gut-2013liver-visceral white adipose tissue (v-WAT) axis and gut microbiota was investigated. Methods: Rats were fed a fructose-rich diet and treated with an antibiotic mix. Inflammation was measured in portal plasma, ileum, liver, and v-WAT, while insulin signalling was analysed by measuring levels of phosphorylated kinase Akt. The function and oxidative status of hepatic mitochondria and caecal microbiota composition were also evaluated. Results: Ileal inflammation, increase in plasma transaminases, plasma peroxidised lipids, portal concentrations of tumour necrosis factor alpha, lipopolysaccharide, and non-esterified fatty acids, were induced by fructose and were reversed by antibiotic. The increased hepatic ceramide content, inflammation and decreased insulin signaling in liver and v-WAT induced by fructose was reversed by antibiotic. Antibiotic also blunted the increase in hepatic mitochondrial efficiency and oxidative damage of rats fed fructose-rich diet. Three genera, Coprococcus, Ruminococcus, and Clostridium, significantly increased, while the Clostridiaceae family significantly decreased in rats fed a fructose-rich diet, and antibiotic abolished these variations Conclusions: When gut microbiota modulation by fructose is prevented by antibiotic, inflammatory flow from the gut to the liver and v-WAT are reversed.

9.
PLoS One ; 10(8): e0134893, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244577

RESUMO

A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.


Assuntos
Antibacterianos/farmacologia , Transplante de Microbiota Fecal/métodos , Frutose/efeitos adversos , Síndrome Metabólica/terapia , Obesidade/terapia , Animais , Bactérias/classificação , Bactérias/genética , Glicemia/metabolismo , Western Blotting , Ceco/efeitos dos fármacos , Ceco/metabolismo , Ceco/microbiologia , Dieta , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Frutose/administração & dosagem , Frutose/metabolismo , Glucose/metabolismo , Peróxidos Lipídicos/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Microbiota/efeitos dos fármacos , Microbiota/genética , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Carbonilação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico 16S/genética , Ratos Sprague-Dawley
10.
Br J Nutr ; 110(11): 1996-2003, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23693085

RESUMO

In the present study, the effect of long-term fructose feeding on skeletal muscle mitochondrial energetics was investigated. Measurements in isolated tissue were coupled with the determination of whole-body energy expenditure and insulin sensitivity. A significant increase in plasma NEFA, as well as in skeletal muscle TAG and ceramide, was found in fructose-fed rats compared with the controls, together with a significantly higher plasma insulin response to a glucose load, while no significant variation in plasma glucose levels was found. Significantly lower RMR values were found in fructose-fed rats starting from week 4 of the dietary treatment. Skeletal muscle mitochondrial mass and degree of coupling were found to be significantly higher in fructose-fed rats compared with the controls. Significantly higher lipid peroxidation was found in fructose-fed rats, together with a significant decrease in superoxide dismutase activity. Phosphorylated Akt levels normalised to plasma insulin levels were significantly lower in fructose-fed rats compared with the controls. In conclusion, a fructose-rich diet has a deep impact on a metabolically relevant tissue such as skeletal muscle. In this tissue, the consequences of high fructose feeding are altered glucose tolerance, elevated mitochondrial biogenesis and increased mitochondrial coupling. This latter modification could have a detrimental metabolic effect by causing oxidative stress and energy sparing that contribute to the high metabolic efficiency of fructose-fed rats.


Assuntos
Frutose/efeitos adversos , Intolerância à Glucose/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Acoplamento Oxidativo , Animais , Ceramidas/metabolismo , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Intolerância à Glucose/fisiopatologia , Hiperinsulinismo/etiologia , Resistência à Insulina , Peroxidação de Lipídeos , Masculino , Renovação Mitocondrial , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA